HPAM: Hirshfeld partitioned atomic multipoles

نویسندگان

  • Dennis M. Elking
  • Lalith E. Perera
  • Lee G. Pedersen
چکیده

An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l(max) on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l(max) = 0 (atomic charges) to l(max) = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l(max) are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ l(max). In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (l(max) = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Charge Density Refinement of Odd-Order Multipoles Invariant under Crystal Point Group Symmetry

Charge density studies utilise a multipolar expansion of the atomic density (and the associated atomic scattering factor) in order to model asphericity. Contributions of the individual multipoles to the atomic density are then refined as multipole population coefficients. Refinement of these coefficients pertaining to odd-order multipoles that are invariant under the crystal point-group symmetr...

متن کامل

Efficient algorithms for Hirshfeld-I charges.

A new viewpoint on iterative Hirshfeld charges is presented, whereby the atomic populations obtained from such a scheme are interpreted as such populations which reproduce themselves. This viewpoint yields a self-consistent requirement for the Hirshfeld-I populations rather than being understood as the result of an iterative procedure. Based on this self-consistent requirement, much faster algo...

متن کامل

Atomic forces for geometry-dependent point multipole and Gaussian multipole models

In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on...

متن کامل

Rules for minimal atomic multipole expansion of molecular fields.

A nonempirical minimal atomic multipole expansion (MAME) defines atomic charges or higher multipoles that reproduce electrostatic potential outside molecules. MAME eliminates problems associated with redundancy and with statistical sampling, and produces atomic multipoles in line with chemical intuition.

متن کامل

Critical analysis and extension of the Hirshfeld atoms in molecules.

The computational approach to the Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] atom in a molecule is critically investigated, and several difficulties are highlighted. It is shown that these difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure. The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer physics communications

دوره 183 2  شماره 

صفحات  -

تاریخ انتشار 2012